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Abstract

Diffusion weighted magnetic resonance imaging enables the visualization of fibrous tissues such as brain white matter. The validation
of this non-invasive technique requires phantoms with a well-known structure and diffusion behavior. This paper presents anisotropic
diffusion phantoms consisting of parallel fibers. The diffusion properties of the fiber phantoms are measured using diffusion weighted
magnetic resonance imaging and bulk NMR measurements. To enable quantitative evaluation of the measurements, the diffusion in
the interstitial space between fibers is modeled using Monte Carlo simulations of random walkers. The time-dependent apparent diffusion
coefficient and kurtosis, quantifying the deviation from a Gaussian diffusion profile, are simulated in 3D geometries of parallel fibers with
varying packing geometries and packing densities. The simulated diffusion coefficients are compared to the theory of diffusion in porous
media, showing a good agreement. Based on the correspondence between simulations and experimental measurements, the fiber phan-
toms are shown to be useful for the quantitative validation of diffusion imaging on clinical MRI-scanners.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Diffusion weighted magnetic resonance imaging (DW-
MRI) provides a non-invasive tool to explore fibrous tissue
in vivo. An interesting application for DW-MRI is the
investigation of brain white matter where the insight in
the anatomy of neuronal networks is of great interest for
the understanding of normal and pathological processes
affecting brain functions (for an overview see [1]). In order
to develop an accurate quality assessment of DW-MRI on
clinical MRI-scanners a hardware diffusion phantom with
a well-known structure and diffusion behavior is required.
The hardware diffusion phantom may serve as the
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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ground-truth for the quantitative validation of the mea-
surement of diffusion parameters, such as the apparent dif-
fusion coefficient (Dapp) and fractional anisotropy (FA).

Among the hardware diffusion phantoms described in
the literature, isotropic liquids with a well established diffu-
sion constant [2] are used in quality protocols [3]. Besides
plants [4] and other biological phantoms [5,6], several
non-organic anisotropic hardware diffusion phantoms have
been proposed recently: capillary phantoms [7–9] and fiber
phantoms [10,11]. Both kinds of phantoms are intended for
the validation and quality assessment of DW-MRI and Q-ball
imaging on clinical MRI-scanners. However, to enable quan-
titative analysis, it is crucial to obtain an accurate description
of the diffusion properties of these phantoms.

In this work, we present an anisotropic diffusion fiber
phantom useful for the quantitative validation of
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DW-MRI on clinical MRI-scanners. The fiber structure is
investigated by obtaining a high-resolution computer
tomography (CT) scan and its time-dependent diffusion
properties are measured using DW-MRI and bulk NMR
measurements.

To enable quantitative evaluation of the measurements,
the diffusion is modeled in the interstitial space of the fiber
phantom by Monte Carlo simulations of random walkers.
Numerical results are presented for hindered diffusion in
the interstitial space between fibers by modeling the diffu-
sion coefficient, characterizing the Gaussian diffusion pro-
file, and the excess kurtosis, which is a measure of the
deviation from a Gaussian diffusion profile. The influence
of the fiber packing density and ordered versus random
packing geometry on the diffusion behavior is examined
from the short-time to the long-time diffusion limit. Hence,
a framework is created by which the diffusion parameters
can be estimated based on the phantom characteristics
and diffusion time.

The anisotropic fiber phantom constructed for this
study can be regarded as a two-dimensional (2D) porous
medium. Therefore, simulation results can be compared
to the analytical equations derived for diffusion in porous
media. The validation of these theoretical models has
already been demonstrated for porous media in three
dimensions with random packed beads [12,13] and various
types of porous rocks [14,15]. In this paper, we compare the
simulation and experimental results with the analytical
model for diffusion within porous media in two
dimensions.

Theoretical models for diffusion in porous media have
been applied to model the time-dependent diffusion in bio-
logical systems, such as brain white matter [16–18]. The dif-
fusion behavior within the constructed fiber phantoms is in
accordance with a model for the diffusion in the extracellu-
lar space of brain white matter [19]. As the origin of the
DW-MRI signal remains in general unclear, the simula-
tions provided here may also serve as a tool to systemati-
cally study the link between the apparent diffusion
properties and the underlying structure of brain white
matter.
2. Theory

The diffusion of water can be seen as a random process
and hence the displacement of a water molecule can be
described by a probability function. For free diffusion in
homogeneous media, this displacement probability func-
tion is a Gaussian function with a characteristic width pro-
portional to the diffusion coefficient Dfree. However for
long diffusion times in heterogeneous tissue, the diffusion
becomes anisotropic and is described by the apparent diffu-
sion coefficient Dapp or the diffusivity for a given direction
~n, defined by:

DappðDÞ ¼
1

2D
hð~n:~sÞ2i ð1Þ
where~s is the net displacement of a particle during a diffu-
sion time D.

An additional metric to characterize the diffusion in het-
erogeneous media is the apparent excess diffusion kurtosis
Kapp, quantifying the deviation from a Gaussian diffusion
profile, defined by:

KðDÞ ¼ hð~n:~sÞ
4i

hð~n:~sÞ2i2
� 3 ð2Þ

The excess diffusion kurtosis, also called ‘‘diffusion kurto-
sis’’, equals zero in case of a Gaussian diffusion profile
and becomes negative if the diffusion profile is more shar-
ply peaked than a Gaussian distribution and positive if
the diffusion profile is less sharply peaked.

Both parameters Dapp and Kapp can be determined for a
given diffusion time D with a standard diffusion weighted
Stejskal–Tanner sequence [20] with varying narrow gradi-

ents g, by fitting the obtained signal ln SðbÞ
Sðb¼0Þ

� �
to the key

relationship defined in [21]:

ln
SðbÞ

Sðb ¼ 0Þ

� �
¼ �bDapp þ

1

6
b2D2

appKapp þOðb3Þ ð3Þ

where S(b) is the signal intensity at the echo time and b is
given by the usual expression b = (cdg)2(D � d/3) [22],
where c is the proton gyro magnetic ratio and d is the dura-
tion of the gradient with strength g.

The fiber phantoms in this study can be modeled as a
porous medium with a matrix consisting of an infinite pack
of cylinders. The properties of Dapp are reasonably well
understood in porous media, i.e., media consisting of an
impermeable matrix filled with an MR-visible fluid.

In the case of diffusion at short times, the mean diffusion
length ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DfreeD
p

remains smaller than the typical pore
size so that only the molecules located in a layer with a
thickness of the order ld can sense the presence of the sur-
face [23,24,12]. This implies that the diffusion behavior is
determined by the surface-to-volume ratio S/V, with V
the volume of the fluid. When the effects of spin relaxation
at the boundaries are negligible, the time course of Dapp as
a function of diffusion time in the direction perpendicular
to the infinitely long cylinders is dependent on the cylinder
density and the cylinder diameter according to the follow-
ing equation [23]:

DappðDÞ
Dfree

¼ 1� 2

3
ffiffiffi
p
p S

V

ffiffiffiffiffiffiffiffiffiffiffiffi
DfreeD

p
þOðDfreeDÞ ð4Þ

In the opposite limiting case of long diffusion times, the
molecules can travel distances much longer than the pore
size. The diffusion coefficient becomes constant and can
be described by the following formula, introducing the tor-
tuosity parameter k [12].

DappðDÞ
Dfree

¼ 1

k
þ l1

D
þ l2

D3=2
ð5Þ

where l1 and l2 are constants depending on the details of
the geometry. The tortuosity is a property of the medium,
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Fig. 1. The different types of fiber packing geometries and the corre-
sponding coordinate axes used in the Monte Carlo simulations: (a)
hexagonal, (b) square, (c) random.
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i.e., the geometry and the connectivity of the pores. In gen-
eral, its relation with the medium is not very clear. The tor-
tuosity has been theoretically predicted in [18], where the
Maxwell–Garnett equations [25] are applied to diffusion
in a lattice consisting of regular arrays of square and hex-
agonally packed cylinders. The formulas derived in [18] for
hollow cylinders with a given thickness can be simplified to
the situation described here with no water molecules inside
the cylinders.

The following formula, based on a 2-point Padé approx-
imation, has been widely used to interpolate between the
short-time and the long-time limit [12,13,26]:

DappðDÞ
Dfree

¼ 1� 1� 1

k

� � 2
3
ffiffi
p
p S

V

ffiffiffiffiffiffiffiffiffiffiffiffi
DfreeD
p

þ ð1� 1
kÞ

DfreeD
Dfreeh

1� 1
k

� �
þ 2

3
ffiffi
p
p S

V

ffiffiffiffiffiffiffiffiffiffiffiffi
DfreeD
p

þ 1� 1
k

� � DfreeD
Dfreeh

ð6Þ

with h a time constant defining the Padé length¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Dfreeh
p

.
This is the length scale during which the diffusion process
of a particle converts from the short diffusion time limit
to the long diffusion time.

In this paper, we used Monte Carlo simulations of
Dapp(D) to verify the theory of diffusion in the case of
ordered and random 2D fiber geometries. In particular,
the correspondence with Archie’s law was investigated
and the Padé approximant, interpolating the diffusion coef-
ficient in the intermediate time between short- and long-
time diffusion limit, was fitted to the simulation results.

3. Materials and methods

3.1. Monte Carlo simulations

Random water molecule displacement was simulated in
Matlab by a three-dimensional Monte Carlo simulation of
random walkers. For each simulation, 100,000 particles
were initially randomly spread in a square plane of
1 mm · 1 mm, which was oriented transverse in a packing
of infinitely long parallel aligned impermeable rigid cylin-
ders. The trajectory of one spin particle was generated by
moving the particle during each time step t over a distance
of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dfreet
p

(with Dfree the diffusion coefficient of water in a
free medium) in a randomly chosen radial direction. The
random direction was selected using spherical coordinates
by choosing the radial coordinate r, the azimuthal angle
h and the polar angle / according to:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dfreet

p
h ¼ 2pu

/ ¼ arccosð1� 2vÞ

with u and v numbers generated uniform randomly be-
tween 0 and 1. At the cylinder boundaries, particles were
elastically reflected. In the direction along the cylinders,
the particles can travel infinitely long. In the transverse
direction, random walkers that reach one side of the
1 mm · 1 mm square, re-enter again at the opposite side
of the square. The packing geometries of cylinders are de-
fined such that a continuous geometry is obtained when
repeating the square periodically in two dimensions. For
each random walker, the number of times that it leaves
and enters the square at each side is recorded so that for
a given diffusion time D, the total traveled distance could
be calculated correctly. The first and higher order moments
of the total traveled distance in the x-, y- and z-direction
are used to calculate the apparent diffusion coefficient Dapp

and the apparent diffusion kurtosis Kapp according to the
corresponding definitions, Eqs. (1) and (2).

The accuracy of the simulation results is assessed by
determining the accuracy of the diffusion coefficient and
kurtosis in the z-direction. Since the diffusion is not
restricted in this direction, the diffusion coefficient should
equal the diffusion coefficient of a free medium Dfree and
the kurtosis should be zero. Averages of the diffusion coef-
ficient in the z-direction were taken over the simulated time
range for each fiber density. For each fiber geometry, the
relative deviation of the mean value of those averages from
Dfree was calculated as a measure for accuracy. The stan-
dard deviation of the diffusion coefficient and kurtosis over
time was taken as a measure of the precision of the simula-
tions. A step length of 1.6 lm (thus a time step of 0.23 ms)
was chosen because the differences between the current sim-
ulation results and the simulation results obtained with a
much smaller step length (0.5 lm) were within the precision
of the simulation. Given the fact that the simulation time
increases quadratically with decreasing step length, this
step length was considered as a fair compromise.

Simulations were performed for a hexagonal, square and
random packing of parallel aligned cylinders (see Fig. 1) at
a temperature of 20 �C (Dfree = 2.023 · 10�3 mm2/s [2])
and for a free diffusion length ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DfreeD
p

(with D the dif-
fusion observation time) of 50 lm. Increasing fiber densi-
ties (from 0.02 up to the closest possible packing) were
considered.

Ordered packing geometries with varying fiber density
(FD = 0.02, 0.06,. . .) were obtained by generating hexago-
nal and square grids whereby the distance between neigh-
boring grid points, representing the center point of the
cylinders, was narrowed down to the densest packing (0.91
for a hexagonal and 0.785 for a square packing). For these
simulations, the cylinders had a fixed diameter of 20 lm.
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Fig. 2. Photographs of a fiber phantom with the shrinking tube partly
removed: (a) transversal, (b) longitudinal view.
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Random packings were produced by Monte Carlo gen-
eration of a given number of circles in a square
(1 mm · 1 mm), whereby the cylinders were not allowed
to overlap. The effect of the variation of fiber radius was
investigated by generating random packing geometries
containing cylinders with a fixed diameter of 20 lm and
comparing these simulation results with those obtained in
random packing geometries containing cylinders with a
Gaussian distributed diameter of 20 ± 4.1 lm (standard
deviation). The effect of the packing density was examined
by increasing the density in steps of 0.04 starting from 0.02
up to the highest feasible densities reproduced with the pro-
gram, i.e., 0.54 for the simulations with a fixed diameter
and 0.7 for the simulations with a variable diameter.

In the case of a packing geometry of infinitely long par-
allel packed cylinders, we expect that the principal frame of
reference of the diffusion tensor coincides with the axes of a
coordinate system chosen according to the three orthogo-
nal directions x, y and z with the z-direction parallel to
the cylinders. This hypothesis is confirmed in [18,27] and
experimentally verified by the simulation results, showing
that the diffusive motions parallel and perpendicular to
the cylinders are statistically independent and that the dif-
fusion coefficient is the same in all directions perpendicular
to the cylinders. The apparent diffusion coefficients in the
x-, y- and z-direction are thus the eigenvalues of the diffu-
sion tensor. The diffusion tensor (DT) is then given by:

DT ¼
DappZ 0 0

0 DappX 0

0 0 DappY

0
B@

1
CA ð7Þ

Fractional anisotropy (FA), characterizing the degree of
diffusion anisotropy, was calculated using the following
equation [28]:

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDappZ � DappX Þ2 þ ðDappZ � DappY Þ2 þ ðDappX � DappY Þ2

q
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
appZ þ D2

appX þ D2
appY

q

ð8Þ
3.2. Experiments

3.2.1. Fabrication process of the fiber phantoms

The diffusion fiber phantoms in this study were fabri-
cated by holding Dyneema� fibers tightly together with a
flexible, poly-olefin low-temperature shrinking tube
(see Fig. 2). The Dyneema� wires were untwisted, uncoated
and consisted each of 780 parallel aligned ultra-
high-molecular-weight-poly-ethylene (UHMWPE) fiber
filaments (diameter 20 lm, specifications provided by
manufacturer), which are impermeable to water molecules
and highly hydrophobic. To reduce the effect of susceptibil-
ity differences caused by air bubbles, the whole fabrication
process was performed under water. Remaining air bubbles
in the fiber phantoms were removed by squeezing and
repetitively placing the phantoms in a vacuum chamber
and subsequently in an ultrasonic bath to remove small
bubbles attached to the fibers and the shrinking tube.

To determine the micro structure and the packing geom-
etry, a fiber bundle phantom with an external diameter of
3 mm was manufactured and scanned with an X-ray
micro-CT at an isotropic resolution of 3.4 lm. A direc-
tional X-ray tube was used, at a focal spot size of approx-
imately 3.5 lm, a tube voltage of 60 kV and an electron
beam power of 9 W [29]. The data were acquired by a
CMOS flat panel with a replaceable Gadox scintillator,
containing 512 by 1024 pixels at a pixel size of 48 lm.
Because of the relatively small difference in the attenuation
coefficient between water and the fibers, iodine was added
to the water (0.97 mol/l) to increase its attenuation coeffi-
cient. This resulted in reconstructed cross-sections showing
void areas, representing the fiber material.

To evaluate the effect of the packing density on the dif-
fusion properties experimentally, 54 straight fiber bundles
with varying FD were fabricated by holding a varying
number of fiber filaments together in a shrinking tube with
an inside diameter of 9.5 mm. The fiber phantoms were
fixed to a PMMA plate and placed in a cylindrical con-
tainer. The fiber phantoms were oriented parallel to B0 to
eliminate magnetic field gradients induced through local
susceptibility differences and their effect on the diffusion
measurement [5,30].

3.2.2. MR imaging measurements
Different measurements were performed at 20 �C on a

Siemens Trio scanner (3T, Erlangen, Germany) equipped
with an 8-element head coil:

• Diffusion weighted imaging was performed in 60 direc-
tions with an echo-planar spin echo sequence with a recei-
ver band width (BW) of 1275 Hz/pixel. A total of 20 slices
was acquired in a repetition time (TR) of 8 s and with an
effective echo time (TE) of 93 ms. To minimize the influ-
ence of eddy currents, a twice-refocused spin echo
(TRSE) [31] preparation was used with b-factors of 0
and 700 s/mm2. The actual diffusion time D was estimated
to be 36 ms based on the protocol used for scanning. The
resolution was 2 mm · 2 mm · 2 mm. The diffusion
weighted images were used to estimate the diffusion ten-
sors (DT) by linear regression and derive the dependency
of diffusion on direction [22]. Fiber tracking was per-
formed using an Euler line integration algorithm [32].



F
h
d

E. Fieremans et al. / Journal of Magnetic Resonance 190 (2008) 189–199 193
• Proton density measurements were performed with a
multiple spin echo sequence with 32 contrasts with an
inter-echo time spacing DTE = 40 ms, a TR of 10 s
and BW = 130 Hz/pixel. The resolution was
0.9 mm · 0.9 mm · 2 mm. Test tubes with varying con-
centrations of deuterium oxide (D2O) were used as con-
centration standard. The proton density fraction was
obtained by fitting S0 and T2 to the T2-decay function
S(TE) = S0e�TE/T2 whereby the fraction was taken of
the signal S0 in a region of interest (ROI) of the phan-
tom over S0 in a neighboring ROI containing water.
The fiber packing density equals 1-proton density
fraction.
3.2.3. NMR bulk measurements

One fiber phantom with a measured proton density of
0.45 ± 0.05 was used to determine the time-dependent
apparent diffusion coefficient (Dapp) and kurtosis (Kapp).
Quantitative diffusion measurements were performed on a
0.5 T bench top NMR relaxometer equipped with a pulsed
gradient unit (Brüker Minispec mq20). Both a diffusion
weighted pulsed-field gradient stimulated echo (STIM)
and a spin echo (SE) sequence were applied. Various diffu-
sion weighted gradients (0 up to 2 T/m) were applied per-
pendicular to the fiber directions for increasing diffusion
times (D = 20 ms up to 100 ms for STIM, D = 4 ms up to
50 ms for SE, d = 0.7 ms). The acquired signal was aver-
aged over 15 measurements to obtain a sufficiently high sig-
nal-to-noise ratio. To minimize the influence of field
inhomogeneities and gradient imperfections on the result-
ig. 3. Result of the Monte Carlo simulation of the diffusivities as a function of
exagonal (a), square (b) and random (c) packing geometry. DappZ, i. e. the diff
ensities and shown for a hexagonal fiber geometry (d).
ing b-factors, a calibration was performed on a water sam-
ple with dimensions similar to the fiber phantom. The
temperature was kept constant at 40 �C (Dfree = 3.28 ·
10�3 mm2/s [2]). The difference in radius between 20 and
40 �C was immeasurably small. Dapp(D) and Kapp(D) were

obtained by fitting the ln SðbÞ
Sðb¼0Þ

� �
-curve to Eq. (3) using a

Levenberg–Marquardt algorithm.

4. Results

4.1. Monte Carlo simulations

Fig. 3 shows Dapp obtained from the MC-simulations in
the x-direction (perpendicular to the cylinder direction) for
a hexagonal (Fig. 3a), square (Fig. 3b) and random pack-
ing (Fig. 3c) as a function of ld and FD. When neglecting
the statistical variation in Dapp due to noise, Dapp was
found to be identical in both the x- and the y-direction.
Dapp in the z-direction (along the cylinder) for the hexago-
nal packing arrangement is shown in Fig. 3d. In this direc-
tion Dapp equals the diffusion coefficient of a free medium
and is independent from diffusion time or packing density.
DappZ was also found to be equal to Dfree for all other pack-
ing geometries. The results for the random packing geom-
etries with a fixed diameter were similar to the results for a
random packing with a variable diameter. The precision of
the simulations was 0.5%.

The Monte Carlo simulations for the diffusion in the
transverse plane (x,y) reveal a short-time diffusion limit
with a time-dependent Dapp and a long-time diffusion limit
ld and FD. DappX, i.e., the diffusivity in the transverse plane is plotted for a
usivity in the longitudinal direction, is similar for the three tested packing
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with a constant Dapp, described by the tortuosity (Eq. (5)).
As an example, Fig. 4 shows the time-decay of Dapp as a
function of ld for the three tested packing geometries with
a given density of 0.58. The decay of Dapp in the short-time
limit is the same for the three types of packing geometries
with the same density and corresponds to Eq. (4) with
S
V ¼ 2

R
FD

1�FD
(R = 10 lm and FD = 0.58). However the

Dapp-decay curves deviate in the long-time diffusion limit
for each geometry and fiber density.

Eq. (6) was fitted to the simulation results using a
Levenberg–Marquardt algorithm to obtain Dapp in the
long-time diffusion limit (Fig. 5a) 1

k and the Padé lengthffiffiffiffiffiffiffiffiffiffiffiffi
Dfreeh
p

(Fig. 5b). The goodness of the fit was evaluated
visually and by calculating the correlation coefficient R2.
A good correspondence with the Padé interpolation Eq.
(6) was obtained for the random geometries
(R2 P 0.995), for the hexagonal packing geometries with
0.2 6 FD 6 0.88 (R2 P 0.992) and for the square packing
geometries with 0.2 6 FD 6 0.7 (R2 P 0.993). For very
low fiber densities (60.2), R2 is lower due to statistical var-
iation caused by noise. For higher fiber densities Dapp

started to deviate systematically from Eq. (6) with increas-
ing fiber density and tortuosity k, resulting in the worst fit,
i.e., an overestimation of the Padé length, at the highest
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packing geometries (R2 = 0.985 for FD = 0.78 for the
square geometry and R2 = 0.98 for FD = 0.78). Dapp

becomes 1
k in the long-time limit. The simulation results

for the regular packing geometries (Fig. 5a) confirm the
theoretical predictions made in [18]. The fitted Padé lengths
in Fig. 5b are about 5 lm larger for a random packing than
an ordered packing geometry, which indicates a longer
transition between short- and long-time limit for a random
packing than for an ordered packing.

Fig. 6 shows Kapp obtained from Monte Carlo simula-
tions in the x-direction for a hexagonal (Fig. 6a), square
(Fig. 6b) and random packing (Fig. 6c) as a function of
ld and FD. The Kapp-curves showed the same behavior in
the x- and the y-direction. The plot of Kapp in the z-direc-
tion is similar for the three different packing geometries
and is shown in Fig. 6d. The precision of the simulations
was 2%.

Whereas the diffusion kurtosis reaches zero in the lon-
gitudinal direction and for long diffusion lengths in the
transverse plane, the kurtosis becomes positive in the
transverse plane at intermediate diffusion lengths, indicat-
ing a diffusion profile less sharply peaked than a Gauss-
ian diffusion profile. For low fiber densities, Kapp

increases slightly with fiber density and is similar for
the three packing geometries, while Kapp increases con-
siderably for higher fiber densities, whereby the square
packing geometry results in the highest kurtosis values.
It is also noted that Kapp stays positive for longer diffu-
sion lengths in the random than in the ordered packing
geometries.

4.2. Experiments

Fig. 7a and b show a cross section and the three-dimen-
sional reconstruction of the micro-CT scans, showing a
random packing of the fibers inside the fiber phantom
and a parallel alignment of the fibers in the longitudinal
direction. No significant air bubble artifacts were found
on the DW EPI images of the fiber bundles.

A fiber tracking example of fiber phantom is shown in
Fig. 8, demonstrating a good agreement between the actual
fiber direction and the direction of the reconstructed fibers.
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Fig. 6. Result of the Monte Carlo simulation of the kurtosis as a function of ld and FD. KappX, i.e., the kurtosis in the transverse plane is plotted for a
hexagonal (a), square (b) and random (c) geometry. KappZ, i.e., the kurtosis in the longitudinal direction, is similar for the three tested packing geometries
and is shown for a hexagonal fiber geometry (d).
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Fig. 7. (a) Micro-CT image of a cross section of a fiber phantom. (b)
Three-dimensional reconstruction of a ROI chosen within the fiber
phantom, note that here the void area representing the fibers is rendered
opaque (white), while the iodine-doped water is rendered transparent.

Fig. 8. Fiber tracts after DTI of a fiber phantom.
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Fig. 9. Comparison between the FA-measurements of the fiber phantoms
and the simulated FA-values for a random and a hexagonal packing with
a D = 36 ms. This diffusion time corresponds with the long-time diffusion
limit in case of a hexagonal geometry but not in case of a random
geometry which is also plotted for illustration.
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Fig. 9 shows the measured FA-values as a function of
the measured FD-values. The error bars of the experimen-
tal data show the standard deviation over the chosen ROI’s
within the fiber phantoms (containing 297 ± 45 voxels for
the FD-measurements and 96 ± 41 voxels for the FA-mea-
surements). The T2-fits were performed using a Levenberg–
Marquardt algorithm with all correlation coefficients
P0.997. The standard deviation of the FD increases with
FD.

The measured FA-values can be compared with the sim-
ulated FA-values with a diffusion time according to the
experimental set-up, D = 36 ms, for a random and a hexag-
onal packing geometry. The best correspondence between
experiment and simulations is found for a random packing
geometry. As an illustration of the time-dependency, the
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simulated FA-values in the long-time diffusion limit are
also shown in Fig. 9. For D = 36 ms the long-time diffusion
limit is already reached in case of the hexagonal packing
geometry but not for the random packing geometry.

Fig. 10a shows the measured Dapp(D) of the bulk NMR
measurement of a fiber phantom in comparison with the
simulated Dapp(D) for a random packing with densities of
0.54, 0.58 and 0.62. The same comparison between experi-
ment and simulation is shown for Kapp(D) in Fig. 10b. The
Dapp- and Kapp-values were fitted using a Levenberg–Mar-
quardt algorithm with all correlation coefficients P0.998.
The noise level could be neglected. Taking into account
the error bars, indicating the 95% confidence bounds of
the fit, the fitted Dapp-values are the same for the SE and
STIM sequence, whereas for the fitting results of Kapp,
there is a difference of 10%. There is a good agreement
between the experimental measured Dapp(D) and the simu-
lated Dapp(D) with FD = 0.58, which matches the measured
proton density fraction of the fiber phantom of
0.45 ± 0.05. However, a difference of maximum 15% was
found between the simulated Kapp(D) with FD = 0.58 and
the experimentally measured curve.

5. Discussion

5.1. Monte Carlo simulations

The diffusion in the interstitial space between fibers was
modeled in the short- and long-time limit using Monte
Carlo simulations to investigate the influence of the fiber
density and the packing geometry. The simulated time-
dependent diffusion coefficients were verified with the
theory of diffusion in porous media for the short-time
(Eq. (4)) (see Fig. 4) and for the long-time diffusion limit.
The simulated diffusion coefficient corresponds very well
with the analytical equations derived in [18] for a hexago-
nal and a square packing (see Fig. 5). In contrast to the
results for ordered packing arrangements, the simulations
in the random packing geometries revealed higher tortuos-
ity and anisotropy values, especially at lower fiber densi-
ties. This may be attributed to the fact that for random
geometries there is a larger variation in the distance
between fibers. In case of nearly touching fibers, pockets
or lakes are created in which the approaching particles
get trapped, resulting in an effective diffusion coefficient
of zero in the long time. This so called ‘‘pocket-effect’’
[33,34] also explains the differences in tortuosity between
hexagonal and square packings for higher densities, where
the diffusion process is mainly dominated by the pore struc-
ture of the interstitial space [35,36]. As proven by the sim-
ulation, the large spread in inter-fiber distance in a random
packing geometry results in a longer transition in time
between short and long-time diffusion limit in comparison
with ordered geometries. As in DTI the diffusion time is
typically 50 ms or more, this effect, in combination with
the fiber sizes of the diffusion phantom and ld, can not be
neglected when performing quantitative DW-MRI, as
shown in Fig. 9.

The simulation results were used to test the accuracy of
the Padé approximation for increasing fiber densities. The
Padé form of Dapp(D) in Eq. (6) is an interpolation formula
that connects the analytical short- and long-time diffusion
limits. The physical interpretation of the Padé lengthffiffiffiffiffiffiffiffiffiffiffiffi

Dfreeh
p

is not straightforward since there exist different
length scales in the packing geometries. Many experimental
studies show that the Padé equation Eq. (6) adequately fits
most 3D data such as random bead packs [12,13] and por-
ous rocks [15]. The simulation data in this study confirm
that this equation is also appropriate for fitting 2D geom-
etries but some deviations are found for the ordered pack-
ing geometries with the highest densities. The Padé
approximation seemed less suitable in the cases of 2D
geometries with very high densities. Besides the Padé
approximant, the time dependence of diffusion weighted
MR signals can also be parametrized with an anomalous
diffusion model like described in [37], where a simple model
for anomalous diffusion in random disordered media and
fractal spaces was used.

Monte Carlo simulations are frequently used to model
the diffusion coefficient. In addition, this paper shows its
utility for modeling the diffusion kurtosis, though some
noise-related statistical variation is still present. The diffu-
sion kurtosis reaches zero for long diffusion lengths in the
transverse plane, confirming the supposition of a Gaussian
diffusion profile that can be described by the tortuosity.
However, for intermediate diffusion lengths the diffusion
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kurtosis becomes positive. As the considered porous med-
ium can be regarded as a single compartment system, Kapp

reveals here the non-Gaussian diffusion behavior caused by
the presence of barriers. As shown in Fig. 6, the diffusion
kurtosis increases considerably with fiber density so that
the DW-MRI signal shows a non-exponential decay when
b-values become large.

The simulations performed for this study and the
described phantom relate to the extracellular space between
the axons in brain white matter [19]. The results described
here provide complementary information to the numerous
in vivo diffusion models, such as the difference in diffusion
behavior between random and ordered packing geometries
and the presence of the diffusion kurtosis, resulting in a
non-exponential DW-MRI signal decay for high b-values.
In addition to the model for restricted diffusion described
in [38], this study presents the non-Gaussian diffusion in
case of hindered diffusion in the interstitial space. The
question raises whether the assumption made in some dif-
fusion models [27] is correct that the signal attenuation at
high b-values is caused exclusively by diffusion in the
intra-axonal space. Although the Monte Carlo simulations
performed here suggest that hindered diffusion also exhibits
non-Gaussian diffusive motion, the findings of this study
can not been extrapolated directly to the case of diffusion
in the extra-axonal space. The geometry of brain white
matter differs from the model of packed cylinders used in
this study. The diameter of the cylinders used in the simu-
lations was in average 20 lm and the maximum fiber pack-
ing density for a random packing geometry in this study
was 0.7. The diameter of the axons in brain white matter
is much smaller than 20 lm [39] and the axon density is
measured to be about 0.8 [40]. Both differences can dimin-
ish or shorten the effect of kurtosis in the diffusion
measurements.

In order to test the several diffusion models described in
the literature, it would be interesting to create more realis-
tic phantoms such as capillaries, imitating the diffusion in
both intracellular and extracellular space of brain white
matter.

5.2. Experiments

Fig. 9 demonstrates a good agreement between the
experimentally derived FA in the fiber phantoms and the
corresponding simulated FA for random cylinder packing
geometries with the corresponding densities. Moreover,
the time-dependent Dapp and Kapp demonstrate the best
agreement with the corresponding fiber density for a ran-
dom packing geometry as can be seen from Fig. 10. By per-
forming the measurement at 40 �C, the term (bDfree)

2 in Eq.
(3) was high enough for the signal decay to become non-
exponential and Kapp could be fitted. The small differences
between the measured Kapp with the SE and the STIM
sequence can be explained by the slightly different range
of b-values used in both experiments. The data obtained
with the bulk NMR experiments are not precise enough
to resolve the higher order coefficients (kurtosis, . . .). How-
ever, incorporation of a higher order terms in the fitting of
ln (S) turned out to be necessary to obtain an accurate
description of Dapp [41].

The hypothesis of a random packing geometry is verified
in Fig. 7. The random geometry is a consequence of the
fabrication method of the fiber phantoms which does not
allow for controlling the distance between the fibers.
Although in reality the fibers are not perfectly parallel,
the effect of the variation in the longitudinal directions is
negligible in comparison with the effect of the packing
arrangement in the transverse plane. Thus, the model of
parallel aligned cylinders is suitable for modeling the diffu-
sion in the fiber phantom.

Thanks to the shrinking tubes, the fiber phantoms could
be manufactured in a reproducible way. The homogeneity
of the fiber density increased with fiber density, indicating
that for low FD, the Dyneema� fibers tend to cluster
together in the middle of the shrinking tube of the fiber
phantom (also visible in the micro-CT image Fig. 7). Pos-
sible deviations in the coregistration between the proton
density and FA-images due to the difference in resolution,
may have caused a slight overestimation of FA for the low
fiber densities. Since the effect of clustering of the fibers
within the selected voxels would result in a decrease of
FA (simulation data not shown here), the assumption that
the fibers are homogeneously random packed within the
size of the voxels seems valid.

As the diffusion is restricted to the interstitial space
between the hydrophobic fibers, the proton density is lower
in comparison with that measured in in vivo DW-MRI
experiments of the brain, where the myelinated axons have
a tubular structure. However, for the preparation of the
fiber phantoms, non-doped water is used, so the large T1

and T2 relaxation times compensated for the signal loss
in proton density, resulting in a high signal-to-noise ratio.
In this study, possible effects of local susceptibility differ-
ences on the diffusion measurement were eliminated by ori-
enting the fibers parallel to B0. This problem is to be
addressed in the future. The effect of surface relaxation in
the short-time [24] and long-time [42] has been described
in the literature. Preliminary measurements and simula-
tions of the surface relaxation and its effect on the apparent
diffusion coefficient have been carried out to conclude that
the effect can be neglected in this study.

Several possible applications for Dyneema� fiber phan-
toms can be pointed out. As they have a well-known diffu-
sion behaviour, they can serve as a reference tool. In this
way, they can be applied to provide a daily reproducible
standard for DTI and to set systematic error limits on
FA and other diffusion parameters. They are also helpful
in multi-center studies. The FA-values were high enough
to perform fiber tracking and the obtained fiber tracts cor-
respond with reality which makes these fiber phantoms
helpful for testing tractography algorithms. The flexibility
of the shrinking tubes enables the construction of fiber
tract topologies.
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6. Conclusion

The diffusion in the interstitial space of an anisotropic
fiber phantom was measured using DW-MRI and bulk
NMR measurements. The measured diffusion parameters
agree with those obtained through Monte Carlo simula-
tions of diffusion in porous media consisting of parallel
randomly packed cylinders. The MC simulations confirm
the accuracy and validity of the existing analytical models
for ordered packing geometries. The simulations in the ran-
dom geometries revealed higher anisotropy values and a
longer transition between the short and long-time diffusion
limit in comparison with ordered packing geometries.

From this work, we can conclude that Dyneema�

fiber phantoms are appropriate for testing DW-MRI
sequences and diffusion parameters on clinical MRI-scan-
ners quantitatively.
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